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The dynamics of planar and outward propagating cylindrical flames has been studied in terms of exact
solutions of the Sivashinsky equation with a random force term. The force term models the computational
roundoff errors or a variety of perturbations of physical origins. In contrast to noiseless conditions, the number
of poles in the system does not conserve and new poles appear due to the external forcing. It was found that
modification of the pole solutions taking into account the appearance of new poles captures the features typical
for the hydrodynamically unstable flames, which cannot be detected by the pole solutions with a fixed number
of poles. Investigations based on the pole solutions make it possible to exclude the uncontrolled numerical
noise that is always present in direct computations of the Sivashinsky equation, and to examine the interplay
between noises and hydrodynamic instability. The study clearly demonstrates that the presence of noises is a
necessary condition for flame acceleration.
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I. INTRODUCTION

A spherical flame expanding out from the ignition source
is one of the most basic configurations of premixed combus-
tion. It was observed in experiment �1� that the front of an
outward propagating flame does not remain smooth given
enough time. Instead, a self-similar structure of cells is
formed on the flame surface and the flame front undergoes a
noticeable acceleration. The cellularization of flame fronts
was associated with the intrinsic long-wave combustion in-
stability, also known as the Darrieus-Landau or the hydrody-
namic instability �2,3�.

To describe an outward propagating flame, Sivashinsky
�4,5� proposed a weakly nonlinear integro-differential equa-
tion of flame front that is motivated by the physics and cap-
tures a number of essential features typical for the flames that
are driven by hydrodynamic instability. Though the reduced
equation is valid only for the small-heat-release limit �i.e.,
for the case of the vicinity of the density ratio between un-
burned and burned gases, E=�u /�b, to unit�, it generates
qualitatively reasonable solutions even when the thermal ex-
pansion coefficient E is extrapolated over realistic values �6�.
Numerous works �5,7,8� dedicated to numerical simulations
of expanding flames governed by the Sivashinsky equation
clearly indicate front cellularization and substantial flame ac-
celeration. It was proposed that these phenomena resulted
from explicit and/or implicit forcing, which is always pre-
sented both in experiments and calculations. The effect of
forcing has been studied in �7� by computation of the Sivash-
insky equation with an additional term that describes exter-
nal noise. A clear correlation between the strength of the
forcing and the flame expansion rate was proposed. How-
ever, numerical simulations of the Sivashinsky equation sub-
jected to external white noise may provide only circumstan-

tial support of the conjecture of noise-driven acceleration
due to the extreme sensitivity of the equation to uncontrolled
numerical noises that are always presented in the calcula-
tions. The attempt to exclude the effects of roundoff errors
was undertaken in �8� by using some filter. Yet these authors
noted that even filtered numerical integrations of the Sivash-
insky equation were not noise-free and the remaining com-
putational errors still affected the flame front dynamics.

The Sivashinsky equation allows for a whole class of ex-
act pole solutions �9–11�, which have proved to be extremely
useful for understanding the wrinkled flame dynamics. Ana-
lytical technique based on pole decomposition provides a set
of ordinary differential equations for the positions of the
poles in the complex plane that determine the geometry of
the developing front. The pole description gives an exact
representation of the flame dynamics without noise. Nonsus-
ceptibility of the exact solutions to the numerical noises and
roundoff errors presents the way to add totally controlled
noise in the system so as to clarify its influence on flame
dynamics.

For the noiseless condition, the pole dynamics always
conserves the number of poles given by the initial condition.
As a result, the exact solution of the Sivashinsky equation is
incapable of describing the continuing self-similar cellular-
ization of the expanding front and the flame self-acceleration
that were observed in experiments and numerical simulations
�8,12�. Such a sharp contradiction between the analytical re-
sult and the numerical simulation of the Sivashinsky equa-
tion was also revealed in the case of wrinkled flames propa-
gating in the duct. According to the theoretical prediction
�9,10�, the nondimensional velocity of propagation of the
wrinkled flame is bounded by the value 1+ �E−1�2 /8, where
E is the thermal expansion coefficient. Furthermore, numeri-
cal simulations �7,13� predict a significantly larger value of
the flame velocity, which increases with the flame size �i.e.,
characteristic diameter of the duct� L. It is therefore tempting
to conjecture that noise may play an important role in affect-
ing the dynamical behavior of the flame fronts driven by the
hydrodynamic instability.

*Author to whom correspondence should be adressed;
panpeter@ntu.edu.tw

PHYSICAL REVIEW E 78, 056301 �2008�

1539-3755/2008/78�5�/056301�7� ©2008 The American Physical Society056301-1

http://dx.doi.org/10.1103/PhysRevE.78.056301


In terms of the pole decomposition technique, the effect
of noise may be manifested by the appearance of new poles
in the system. The theoretical estimation of the influence of
an additional pole on the flame dynamics has been presented
in �14,15�. It was shown that the addition of a new pole may
lead to the formation of a new secondary cusp on the out-
ward propagating flame front �15�. It reveals the possibility
of linking the self-similar structure and the pole solutions
with controlled noises. In spite of this, the effects of external
random forces on the exact solutions of the Sivashinsky
equation were still not clearly understood.

The main goal of this work is to investigate the influence
of noise on the characteristics of a flame propagating in the
duct and outwardly expanding flames in terms of pole dy-
namics. Calculations based on the exact solutions make it
possible to exclude the effect of uncontrolled numerical
noise and to examine the interplay between noises and insta-
bility. The study shall demonstrate clearly that the presence
of noises is a necessary condition for flame acceleration. A
qualitative comparison between the calculations of pole so-
lutions and numerical simulations of the Sivashinsky equa-
tion is also discussed.

From the physical point of view, the Sivashinsky equation
with random force terms may describe the flames propagat-
ing through the space with localized nonuniformities or flow
disturbances �such as dust or vortices�. Therefore, these is-
sues are relevant also to the problems of combustion in the
particle-laden flows.

II. MATHEMATICAL MODEL

A simplified mathematical model for cellularization of hy-
drodynamically unstable flames was obtained in �4,5�, and in
this work, we have performed an investigation for the evo-
lution of unstable flame fronts governed by the Sivashinsky
equation. After appropriate rescaling, the Sivashinsky equa-
tion describing the nonlinear evolution of outward propagat-
ing cylindrical flames can be written as �5�
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Here r=R�� , t�=Rf�t�+h�� , t� is the shape of a perturbed
cylindrical flame front expressed in dimensionless variables
constructed based on the Markstein length Ma; Rf�t�
= �1 /2���0

2�R�� , t�d� is the mean radius of the expanding
flame; t is nondimensional time, in units of Ma /Ub; f�� , t� is
an upstream perturbation of the unburned gas velocity field
�7�; �=E−1, where E=�u /�b is the thermal expansion coef-
ficient defined as the ratio between the densities of unburned

and burned gases, respectively. The operator Î�R� is defined
in �5� as
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In the absence of external force, f�� , t�=0, the solution of
the Sivashinsky equation can be expanded in functions that
depend on N poles whose position zj =xj + iyj, j=1, . . . ,N, in
the complex plane is time-dependent �9,12,16–19�,
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R��,t� = 2�
k=1

N
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where u
�R /�t and C�t� is a function of time. The function
�3� is a superposition of quasicusps �i.e., cusps that are
rounded at the tip�. The real part of the pole position �i.e., xj�
describes the angular coordinate of the maximum of the qua-
sicusp, and the imaginary part of the pole position �i.e., yj� is
related to the depth of the quasicusp. As yj decreases �in-
creases�, the height of the cusp increases �decreases�. The
variables xj and yj determine also the locations of virtual
sinks in the combustion product for the velocity potential of
fresh gas and the positions of virtual sources in the fresh-gas
region for the velocity potential of combustion product �12�.
Therefore, the data about variables xj and yj make it possible
to reconstruct the velocity fields on both sides of the front at
any time. The positions of the poles satisfy the system of
ordinary differential equations �9,15�,
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In noiseless conditions �f�� , t�=0�, the total number N of
poles is conserved in time and equal to the number of poles
that exist in the initial conditions. Linear stability analysis
�9� has showed that the exact solutions �2�–�4� with a con-
stant number of poles are stable with respect to small pertur-
bations. Thus, the pole solutions of Sivashinsky equation �1�
with zero force term �f�� , t�=0� are unsusceptible to the in-
fluence of numerical noise due to the exponential damping of
perturbations generated by roundoff errors. In contrast, the
direct simulation of the Sivashinsky equation gives no way
to isolate the noise effect because of extreme sensitivity of
this equation to the uncontrolled numerical noise always
present in the calculations �7,15,20�.

A random pointwise set of perturbations uniformly dis-
tributed in time and in space is a suitable model for both the
computational roundoff errors and a variety of perturbations
of physical origins �7�. Such a model can be written as
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f��,t� = �
m=1

M

gm�����t − tm� . �5�

Let us show that the impulselike noise �5� to be inserted in
Eq. �1� can be modeled in terms of the pole dynamics as the
appearance of new poles in the system �4�. As demonstrated
in �12,14�, any function that can be represented in Fourier
series can be approximated to a desired accuracy by pole
decomposition, Eq. �2�. Therefore, we can assume without
loss of generality that the function gm��� is represented as
finite sums,
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In this case, the solution u�� , t� of Eq. �1� with a force term,
Eq. �5�, can be expanded in the series,
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where H�x� is the Heaviside function. By substituting Eq. �6�
in Eq. �1�, which is differentiated on �, and using the sym-
bolic equality �� /�t�H�t− tm�=��t− tm�, we obtain the system
of ordinary differential equations for positions of poles in the
same manner as the system of Eq. �4� was obtained. This
system is identical to that of Eq. �4� except that the number
of poles is changed in time, i.e., the Ng,m poles are added in
the system at the time moments t= tm, m=1, . . . ,M. Thus, the
exact solutions of the Sivashinsky equation enable us to ex-
clude the effect of uncontrolled roundoff errors and consider
only the external noise described by the forcing term of Eq.
�5�.

III. RESULTS AND DISCUSSION

A. Flame in the planar duct

All derivations of the previous section can be extended to
the case of flame propagating in the planar duct with trans-
verse size L. A detailed description of the Sivashinsky equa-
tion and pole decomposition technique for this case has been
given in �4,9,14�. Under the noiseless condition �f�� , t�=0�,
there is only one stable stationary solution for the disturbed
flame front, which is geometrically represented by a giant
cusp and analytically by Nc=�L /8� poles that are aligned on
one line parallel to the imaginary axis �9�. It can be shown
that for any number of poles in the initial condition, this is
the only attractor of the pole dynamics �9,14�. Calculations
with different initial conditions containing a large number of
poles demonstrate that after a short transition stage this

steady state is established. As shown analytically in �10�, the
velocity of the stationary propagating flame is independent
of the size of the duct L and bounded by the value Vc=1
+�2 /8. Contrary to the theoretical results, numerical simula-
tions �7,13� of the Sivashinsky equation show that the flame
front velocity increases with the growth of the flame size and
can considerably exceed the predicted maximal velocity Vc.
It is conceivable that this contradiction between the analyti-
cal and numerical results would be explained by the influ-
ence of numerical noise.

Figure 1 shows the temporal dependency of the front ve-
locity of the steady propagating planar flame subjected at the
initial time moment to the impulselike noise �5� with M =1
and Ng,1=1, which is modeled by the appearance of only one
new pole. As illustrated in Fig. 2, the small perturbation of
the flame surface grows rapidly and forms a new cusp that
moves toward the giant cusp and subsequently merges with

FIG. 1. Time dependency of the velocity of the flame propagat-
ing in the duct with L=90 and �=2, disturbed by adding a pole at
the position �xadd,yadd�.

FIG. 2. Evolution of a flame upwardly propagating in the duct
with L=90 and �=2. The steadily propagating flame was perturbed
by addition of one new pole at the position xadd=5 and yadd=30.
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it. The huge amplification of the flame surface area causes a
substantial change of the propagation velocity over a finite
period of time, although it will decay as t→�. This result
obtained in terms of an externally perturbed pole solution
coincides with the prediction via numerical analysis for the
pseudospectra of the linear operator associated with the
Sivashinsky equation that is linearized in the neighborhood
of the steady solution �20�. The importance of huge transient
amplification of perturbations was also found in other physi-
cal systems, for example in the Hagen-Poiseuille flow �21�. It
is suggestive that under the influence of a periodic flame-
front distortion, such strong short-time magnification of
small perturbations may result in the formation of a train of
secondary cusps that move toward the giant cusp. This dy-
namics causes the growing of the flame-front surface area
and amplification of the propagation velocity.

Numerical calculation for the exact solution of Eq. �1�
with periodic �tm+1− tm=T=const� noise term �5� shows a
considerable increase of the average propagation velocity in
comparison with the velocity given by the noiseless station-
ary solution. The dependency of flame propagation velocity
on the flame size L is shown in Fig. 3. It is assumed that the
number of additional poles Ng per unit of the plane flame
surface is constant. This physically reasonable assumption
was suggested by numerical simulations �20�, which show
that the number of microcusps on the flame surface grows
with the flame size. From the physical point of view, this
assumption, for example, may model the propagation of a
planar premixed flame through the dusted space with con-
stant dust density. The new poles appeared at random posi-
tions inside the rectangle �0,L�� �ymin,ymax� in the complex
plane. The real part of the pole position describes the x co-
ordinate of the local maxima on the flame front and the
imaginary part characterizes the amplitude of the external
perturbation, with a smaller value indicating a larger distur-
bance amplitude. As can be seen in Fig. 3, the flame front
velocity increases with the growth of the flame size, which is
in qualitative agreement with the results of numerical simu-
lations �7,13,14,20� and analytical estimations �14�. Thus,

unlike the noiseless pole solution, the exact solution of the
Sivashinsky equation with force term �5� is capable of cap-
turing the peculiar features of the flame propagation in the
planar duct such as dependency of the propagation velocity
on the flame size. Based on these results, one may conclude
that the increase the flame front velocity with the growth of
the flame size is the only effect of the appearance of new
poles modeling noises, and the value of velocity amplifica-
tion depends on the noise intensity.

B. Cylindrical flame

In contrast to the case of flame propagation in a planar
duct, in radial condition there is no stable steady state with a
finite number of poles. Initially the system can contain infi-
nitely many poles, most of which may have a large negative
imaginary part and thus have no contribution to the flame
front surface. As was shown in �12�, only Nc= �Rf��2

+
�2+8� /4� poles may affect the dynamics of an outwardly
propagating flame front of average radius Rf. Imaginary parts
of all the other poles increase exponentially with time and,
therefore, the corresponding cusps on the flame surface de-
cay exponentially. Yet, since the average radius of the ex-
panding flame increases with time, the value Nc also grows
and the imaginary parts of more and more such poles may
start to decrease and affect the flame surface significantly
and hence the flame propagation velocity. Thus, distinguish-
ing the effects of initial perturbations and external noises on
the outwardly propagating flame dynamics is less straightfor-
ward �14� than the case of flame propagation in the duct. In
order to clarify the behaviors of the pole solutions of the
noiseless �f�� , t�=0� Sivashinsky equation �1�, which con-
tains an infinitely large number of poles, the set of solutions
with a finite but gradually increasing number of poles was
considered. Time dependencies of the outwardly propagating
flame velocity calculated by the pole solutions with a differ-
ent number of poles are shown in Fig. 4. As can be seen, the
propagation velocity grows only over a short initial stage and

FIG. 3. Velocity of a flame propagating in the duct versus diam-
eter of the duct L. The noise effect is modeled by a periodic appear-
ance of the Ng new poles at random positions in the rectangle
�0,L�� �ymin,ymax�. �=2, Ng /L=0.02, T=50.

FIG. 4. Time dependency of the outwardly propagating flame
velocity calculated by exact pole solutions with a fixed number of
poles Np for �=2.
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subsequently decays to the velocity of an undisturbed flame.
Moreover, the expansion rate is almost independent of the
number of poles. This fact suggests that such behavior is
qualitatively retained even for an infinitely large number of
poles in the exact solution of the Sivashinsky equation with
zero force term.

The sharp contradictions between the results of direct
computation of the Sivashinsky equation �5,7� and analytical
results based on the exact solutions �2�–�4� of the noiseless
equation �1� are also presented in the case of outwardly
propagating cylindrical flames. Therefore, substantial accel-
eration of the flame front and the fractal-like structure of the
expanding flame surface have been observed in numerous
numerical simulations but cannot be described in terms of
pole solutions conserving the number of poles that exist in
the initial conditions �12�.

The exact solution of the Sivashinsky equation �1� with
impulselike periodic force term �5� was obtained by numeri-
cally solving the system of Eq. �4� with a variable number of
poles. The Ng new poles appeared with periodicity T at ran-
dom positions inside the complex rectangle �0,2��
� �ymin,ymax�. As in the case of a plane flame, we have as-
sumed a constant number of additional poles Ng per unit
flame surface. Due to an increase of the mean flame radius,
the number of additional poles also increases proportionally
to the flame radius. Physically this situation may be associ-
ated with sources of the flame perturbations uniformly dis-
tributed in the unburned region, for example small particles.
When a particle crosses the flame front, it generates a local
perturbation that is described by a pole solution.

In the pole expansion, Eq. �2�, the harmonics with n
	Nc, where Nc= �Rf��2+
�2+8� /4�, are exponentially
damped �12�. Consequently, the number of equations in the
system �4� shall be bounded by the value Nc. Unfortunately,
in contrast to the direct simulation of the Sivashinsky equa-
tion �1�, which can be performed with computational cost of
Ngrid log2 Ngrid operations per time step by applying the
highly efficient fast-Fourier-transformation technique, the
cost of calculating the exact solutions from the system �4� is
of order N2 operations in one time step. This issue presents a
significant challenge to computation of Nc equations in the
system �4�, due to the big value of Nc that is proportional to
the flame radius Rf. Since the main purpose of the present
work is to qualitatively investigate the noise effect on the
pole solutions of Eq. �1�, we have restricted ourselves to the
calculations of the fewer than Nc equations in the system �4�.
With the objective to reduce the computing cost, the simula-
tions were conducted in the sector �� �0,2� /nsec� and ex-
tended to the whole surface by periodicity. Numerical tests
show that the results obtained by calculations in the sector
and in the whole circle coincide with each other �Fig. 5�.

The time dependences of the flame front velocity evalu-
ated for different values of ratio PN=Ng /2�Rf, which repre-
sents the number of additional poles per unit flame surface,
are presented in Fig. 5. Power-law approximations �t− t*�


for the expansion rate of the cylindrical flame are also de-
picted in Fig. 5. As it is seen, the growth exponent 
 is
almost invariant in the wide range of parameters character-
izing the noise intensity, and its value is about 0.75�0.01.
Long-term simulations of the Sivashinsky equation �1� show

�7� that the flame expansion rate slows down as the flame
size grows and stabilizes to the power law t
 with 
�0.25.
The curves marked by solid and open circles in Fig. 5 cor-
respond to the results of direct computation of the Sivashin-
sky equation �1� with the zero force term and with random
periodic noise, respectively. Our estimations of the growth
exponent based on the exact solutions of Eq. �1� are in good
agreement with the numerical results �marked curves in Fig.
5� obtained for the earlier times. Furthermore, the conclusion
of strong correlation between the flame front velocity and the
strength of the forcing demonstrated by numerical simula-
tions of Eq. �1� and by exact pole solutions coincides with
previous works �7,14�. From the physical point of view, it
suggests that upstream velocity perturbations, turbulence, or
small particles �for example for a flame propagating through
dusted space� may affect the flame front expansion signifi-
cantly. Hence, the flame expansion rate observed in experi-
ments would depend on testing conditions such as the den-
sity of the dust or velocity heterogeneity. Calculation of the
pole solutions on the long-time interval, however, meets with
difficulty due to the increase of the total number of poles N
and the considerable cost of the computational algorithm,
which demands N2 operations per time step. Such long-time
simulations are beyond the scope of the present investiga-
tion.

Figures 6�a� and 6�b� illustrate the temporal evolution of
flame front velocity under noiseless condition �the number of
poles N in the system �4� is constant� and in the case of
periodic noise but in the absence of hydrodynamic instability
��=0�, correspondingly. It is shown that the effects of the
external forces or hydrodynamic instability alone do not lead

FIG. 5. Time dependency of the outwardly propagating flame
velocity calculated by exact pole solutions for �=2 and �1� PN

=0.005, T=100; �2� PN=0.002, T=100; �3� PN=0.002, T=200.
Solid and dashed lines correspond to the calculations in the sector
�� �0,2� /6� and in the whole circle, respectively. Marked lines
are the results of direct computation of Eq. �1� with zero �solid
marks� and random �open marks� force terms.
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to substantial acceleration of the expanding flame propaga-
tion. It can thus be concluded that coupling of the noise
effect and intrinsic hydrodynamic instability �Fig. 6�c�� is the
essential mechanism of the self-acceleration of the outward
propagating flames. Moreover, the calculations testify that an
increase of the number of additional poles �i.e., perturba-
tions� Ng with growth of the flame radius is a necessary
condition for flame acceleration, whereas the dependency
Ng�Rf� does not have to be linear.

Typical shapes of the flame front obtained by calculations
of the pole solutions �2�–�4� taking into account the noise
generation of new poles are illustrated in Fig. 7. Much as in
the case of a plane flame, a new small cusp formed due to
noise may move toward a nearby big cusp and merge with it,
as indicated by the arrow. But in contrast to the planar ge-
ometry, it is not the only fate of a new cusp. The continual
growing of the surface area of the outward propagating flame
may result in tip splitting when the new secondary cusp re-
mains near the tip between two existing cracks and does not
merge with any one of them �15�. As demonstrated in Fig. 7,
the pole solutions are capable of describing the cascading
structure peculiar to the expanding flame fronts that have
been observed in experimental investigations �1� and numeri-
cal simulations �7,22,23�. That is the case only when new
poles appear in the exact solution �2� and �3� due to the noise
effect and, moreover, if the number of additional poles Ng
increases with the flame radius.

IV. CONCLUDING REMARKS

The dynamics of hydrodynamically unstable flames has
been investigated in terms of the exact solutions of the
Sivashinsky equation with a random forcing term modeling
an external noise. It is shown that modification of the pole
solutions taking into account the appearance of new poles
due to the noise captures the features typical for the planar

geometry and outwardly propagating flames, which cannot
be detected by the pole solutions with a fixed number of
poles. Therefore, the increasing of the velocity of the flame
propagating in a planar duct with growing of the duct size as
well as self-acceleration and cellularization of the expanding
flame fronts can be described in terms of pole solutions
simulating noises. It is demonstrated that the average veloc-
ity of the outwardly propagating flame grows as t
. Although
the rate of expansion depends on the forcing strength, the
growth exponent 
 is the same in the wide range of param-
eters characterizing the noise intensity. These results ob-
tained on the basis of exact pole solutions are quite in line
with those of direct computation of the Sivashinsky equation.

Nonsusceptibility of the exact solutions to the roundoff
errors allows us to examine the separate influence of the
noise and the hydrodynamic instability on the flame front
dynamics. It was found that only joint action of the noise and
the intrinsic hydrodynamic instability described by the set of
pole solutions causes the flame cellularization and substantial
self-acceleration. The influence of either of the two factors
taken separately does not lead to essential increasing of the
flame velocity. This conclusion provides direct support for
the idea that the flame acceleration results from explicit
and/or implicit forcing, which is always present in the nu-
merical simulation and experimental operation.
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